| | Friday 12 July 2024 | | | | | | | | | | | | | | | | | | |----------------------------|---------------------|---|--|--|--|--|---|--|--|---|---|---|--|---|---|-------------------------------------|---|----------------------------| | TIME | Hellas Sat | <u>Lecture</u>
Level 0
(100 pax, theater) | A. TRIANTI HALL.
Level 0
(1450 pax, theater) | BANQUETING HALL
Level-2
(680 pay, theater) | <u>D. MitroPoulos</u>
Lovel 0
[450 pax. auditorium] | N. SKALKOTAS HALL
Level •1
[380 pax. auditorium] | MC 2 HALL
Level -1
(150 pax, theater) | MC3
Level -1
(180 pax, theater) | Giannis Marinos
Level 0
(200 pax, theater) | Conference 1 Hall
Level 0
(80 pax, theater) | Venus Hell
Level - 1
(100 pax, theater) | Jupiter Hall
Level-1
(100 pax, theater) | Mercury Hall
Level-2
[160 pax, theater] | Mars Hall
Level-2
[100 pax, theater] | MC3.2
Level-1
(55 pas, theater) | MCL3
israid
(40 par. theater) | MCL4
Lend-1
(55 pas, theater) | Trianti Balcony
Posters | | 09:00-09:20 | | TIE.22: YP Climate
Change Panel | FR1.R1: Temporal Data
Analysis: Classification
II | | FR1.R2: Classification
and Clustering VII | and Datasets | FR1.R8: Advancements
in Radar, Lidar, and | ar, and ing for urface y and FR1.R7: Urban and Land Cover Change | FR1.R3: PRISMA
Hyperspectral Data
Exploitation l | | FR1.R9: Large-scale Forest Biophysical Parameter Mapping with the Combination FR1.R10: Ice Sheets and Glaciers II | | FR1.R15: Wildfire
Science, Response, and
Technology: | FR1.R16: SAR in China:
Current Systems, | FR1.R11: Advancing
Earth System Digital | | | | | 09:20-09:40 | | | | | | | Stereoimaging for
Achieving Surface | | | | | | | | | | | | | 09:40-10:00 | | | | | | | | | | | | Challenges, | Methods, Applications | Twins for Informed | | | | | | 10:00-10:20 | Technical | | | | | | Topography and
Vegetation (STV) Goals | | | | of Spaceborne Radar
and Lidar/Optical | | Opportunities and | and Future Missions III | Decision Making I | | | | | 10:20-10:40 | visit | | | | | | i | | | | Sensors I | | Advances I | | | | | | | 10:40-11:00 | | | Coffee Break | | | | | | | | | | | | | | | | | 11:00-11:20 | | | Correct or early | | | | | | | | | | | | | | | Poster Session | | 11:40-12:00 | | | | | | | FR2.R8: Advancements | | | | | | | | | | | | | 12:00-12:20 | | TIE.23: CV Writing | FR2.R1: Temporal Data
Analysis: SAR and
Multimodal Change
Detection I | R2.R14: Advances in
Data Compression
Methods for EO
Systems | FR2.R2: Classification
and Clustering VIII | FR2.R6: AI4EO in Urban
Environments | in Radar, Lidar, and | | FR2.R3: Calibration,
Validation, In-situ | | FR2.R9: Innovative EO
Applications Based on
High Spatial and
Temporal Resolution
Thermal Data I | FR2.R10: Sea Ice II | Science, Response, and
Technology:
Challenges | FR2.R16: SAR in China:
Current Systems,
Methods, Applications
and Future Missions IV | FR2.R11: Analysis-
Ready Data: The First
Step Towards
Interoperability | | FR2.R12: Al-powered | | | 12:20-12:40 | | | | | | | Stereoimaging for
Achieving Surface | FR2.R7: Vegetation
Mapping and | | | | | | | | | Data Engineering and
Reusability for Earth | | | 12:40-13:00 | | | | | | | Topography and
Vegetation (STV) Goals | Monitoring | | | | | | | | | Observation | | | 13:00-13:20 | | | | | | | | | | | | | | | | | Applications | | | 13:20-13:40 | 13:40-14:10 | | | Closing Ceremony | | | | | | | | | | | | | | | | | 14:10-14:20 | | | Lunch Break | | | | | | | | | | | | | | | | | 14:20-14:40 | | | | | 1 | | | | 1 | | | | | 1 | | | | | | 14:40-15:00 | | | FR3.R1: Data Analysis
and Inversion | FR3.R14: Toward
Foundation Models for
EO I | FR3.R2: The Geometry
of Remote Sensing:
From Image Alignment
to 3D Reconstruction | FR3 R6: NI P in FO | FR3.R8: Monitoring
Land Cover and | | FR3.R3: Remote Sensing of Armed Conflicts | | FR3.R9: Innovative EO Applications Based on High Spatial and Temporal Resolution Thermal Data II | | FR3.R15: Remote Sensing Applications for Addressing Critical Challenges in Latin American Countries I | Polarimetric SAR Information Extraction | FR3.R11:
Electromagnetic
n Modeling Methods | | | | | 15:00-15:20
15:20-15:40 | | | | | | | Management Practices | | | | | | | | | | | | | 15:40-16:00 | | | | | | | for Optimizing | rks.k/. wedands i | | | | FR3.K10: Sea Ice III | | | | | | | | 16:00-16:20 | | | | | | | Resources Efficiency in
Agriculture I | cy in | | | | | | | | | | | | 16:20-16:40 | 16:40-17:00 | | | | | | | | | Coffee | Break | | | | | | | | Poster Session | | 17:00-17:20 | 17:20-17:40 | | | FR4.R1: Data Analysis,
Inversion and
Detection | ;, FR4.R14: Toward
Foundation Models For
EO | г | FR4.R6: Al4EO for
Climate Variables | FR4.R8: Monitoring
Land Cover and
Management Practices
for Optimizing
Resources Efficiency in | FR4.R7: Wetlands III | | | FR4.R9: Electromagnetic modeling for Maritime Sensing and Other Applications | FR4.R10: Snow, Sea Ice
and Permafrost | R4.R15: Trends in
Environmental Monitoring
and Disaster Risk
Reduction in the Eastern
Mediterranean, Middle
East and North Africa | | | | | | | 17:40-18:00 | 18:00-18:20 | 18:20-18:40 | 18:40-19:00 | | | | | | | Agriculture III | | | | Applications | | East and North Africa | | | | | |